進学後、中高生の学力が伸び悩む理由

田村 和広

今年も受験は終わり、間もなく万朶の桜咲く。

心機一転、進学先の学校でも一層の飛躍を目指す。しかしなぜか中学受験や高校受験が学力のピークになる人が一定の比率で発生してしまう。「あんなに好成績だった君がなぜ?」そんな事例は誠に多い。挽回不能な水準まで曲がってしまうその前に、軌道修正して行きたい。

中学高校大学受験の全てを一気通貫で指導すると、現代日本の教育を時系列(縦軸)に沿って比較検証できる。また様々な学校の生徒を通じて、各校(横軸)のカリキュラムや指導の心も比較することができる。それらを縦軸と横軸とする座標平面上には、日本の教育環境が抱える課題が浮かび上がる。そこから見える課題のいくつかと対策をお伝えしたい。

伸び悩みの背景:中学及び高校受験における塾と親という環境

受験において進学塾が果たす役割は大きいが、あくまで営利を目的として合格実績を追求する企業である。そのため進学塾では、本質的な思考力の養成ではなく「短い試験時間で得点を最大化する技術」を伝達する。また、親も「未熟ながらも力強い思考力で50点」よりも「パターン認識と条件反射的解答技術で100点」を取ることを称賛する。その方が現実的には目標達成できるからだ。

伸び悩みの原因:中学及び高校受験の二つの副作用

これらの環境から、子ども自身に困ったことが二つ起きる。

一つは、子ども自身が「知恵」を表面的に理解してしまうことだ。「理由はわからなくても知識や公式や解き方を知ってしまえば点が取れる」、「丸暗記すれば、手軽に上手く行く」、「速い人が賢い人」と短絡的に心に刻んでしまうのだ。

もう一つ、こちらの方がより深刻なのだが、好奇心という「知恵の幹」を切り倒されてしまうことだ。受験準備では、「3.14九九(例:3.14×5=15.7)」や「てんびん算(:濃度問題の知的計算尺)」のように、中学受験を終えれば次は30年後(のわが子の指導)まで使わない知識、いわば「小枝と花芽」を数多く速成することに忙しい。そのため、「幹」である「好奇心」というこころが疲れてしまう。また、中学生では三平方の定理など「魔法のような摩訶不思議な叡智」への興味を育てたり、美しさを味わったりする時間的余裕もない。

この「好奇心」こそ、知恵を育てる原動力であり、これが枯れることは致命傷である。

(念のため補足すると、3.14九九もてんびん算も優れた知恵の教材である。問題なのは、せっかくの好材料も忙し過ぎて十分考察できないことである。)

塾の指導に潜むリスク

総合的には頼りになる進学塾だが、気を付けるべきリスクも少しだけある。将来の伸び悩みに直結する負のメカニズムについて、象徴的な具体例を2つ挙げる。

てんびん算(計算技術)

小学校時代の算数で、重要なテーマの一つは比である。比率関係の思考力は非常に奥が深く、身に付けるには時間と訓練が必要である。この比率の一形態である濃度計算において、進学塾では「てんびん算」という計算技術を伝授する。

「150gの食塩水に、食塩を加え…」のような濃度・比率計算の技術である。このてんびん算という計算技術を使えば、濃度関係を深く理解できなくても、扱い方さえ反復練習すれば、素早く答えが出せるようになる。進学塾で教えないところは少ないと思われる。

しかし、てんびん算で手軽に済まし、比率を深く学ぶ機会を失うと、せっかくの思考力錬成機会を捨ててしまうこととなる。すると、中学になって方程式等を学ぶ際に大きな差が出る。

比率の思考力が豊かな中学生は方程式も深く理解できるが、比率の思考力が未成熟な生徒は、方程式も浅くしか理解できないケースが散見される。そのような生徒は演算作業として簡単な方程式の操作はできても、多少複雑度が増すともう立式ができない。脳内に確かな思考の枠組みが無いことは読解力の低下に直結する。こうなってしまうと高校では数学が嫌いになってしまう。

試行錯誤を軽んじる指導

時間が不足気味の進学塾では、どうも試行錯誤を許容しない指導が行われているようなのである。以下はそれを疑うようになったエピソードである。

中学受験には「規則性」というテーマがある。高校数学で「数列」として再会する、数の群れに関するテーマである。これは、ある規則をもって並んでいる数字の列から、その規則性を抽象化して把握できるかどうかを見る問題である。

ある時、算数が得意な児童から、難しい数列の問題の解き方を聞かれた。そこで、具体的に書き出すこと(試行)で、規則性をリズムで味わいながら自然に法則を把握する方法を教えた。理解はできたようなのだが、児童は微妙な空気を醸し出している。確認したところ、「先生、そういうやり方をすると塾の先生に怒られてしまいます。ちゃんとした解き方を教えてください。」と言われた。

これだ、と感じた。中高生の試行錯誤力がなぜ低下するのか、その理由の一つはここにあった。試行錯誤を教えないどころか、試行錯誤する心を塾が刈り取っていたのだ。鳥の風切羽を切るが如く、思考のつばさが切り落とされるので、これでは豊かな拡散思考ができなくなってしまう。

確かに、具体的に書き出す方法で答えが出るとわかると、子どもはそれに頼って抽象的な思考をしない。しかしその未熟さは成長に伴って消失し、やがては本質を掴みに行くようになるので、本来矯正する必要はない。塾としては、あくまでも抽象化して考える姿勢を身に付けさせるために、一度試行の手を縛るだけであって、本当は受験終了後に試行錯誤する心を回復しなくてはならないのだが、分断された塾や学校の体系の中では心の回復が忘れられてしまうのだ。

伸び悩みを回避する具体策

伸び悩みを回避するため、又は突き当たってしまった壁を突破するために必要な勉強方法は以下の通りだ。

  1. 進学塾で注入された条件反射学習を捨てる。
    「このボタンを押せば電話が掛けられる。仕組みは知らないけど。」という心掛けで成果物だけを求めることをやめる。
  2. 意味記憶からエピソード記憶へと、記憶方法を移行させる。意味記憶とは丸暗記、エピソード記憶とはストーリーとしての一連の記憶と捉えても差し支えない。
    例えば公式の丸暗記をやめて、なぜその公式が成り立つのかを知ることで、知識の確かな定着と数学的思考力の向上につながる。中学で習う球の体積のような一部の特殊ケースを除き、殆どのテーマはストーリーで理解できる。そもそも大学受験で問われる領域は範囲が広すぎて、丸暗記では記憶の倉庫に格納しきれない。
  1. 対象物と自分自身の双方を分析する。特に難解なものは小さく分割することである。その際他者が行った分析は参考にはするが、最終的には自分の考えや感じ方を重んじることが大事である。
  2. 新たな学習方法を自分で開発する。記憶力や思考力は十人十色なので、最後には自分で自分に最適な学習方法を創って行くしかない。ただし、自分流が大事だからと言って、最初から我流に走るのではなく、良いとされる学習方法をまずは試すことだ。その上で、自分に合うようにカスタマイズすることである。

結論として、進学でステージが変わった際には、それ以前の成功体験を捨てることが、伸び悩みを回避する上で大切な行動となる。「学習棄却」だ。進学は日本人が苦手とする学習棄却を学ぶ良いチャンスである。

田村 和広 算数数学の個別指導塾「アルファ算数教室」主宰
1968年生まれ。1992年東京大学卒。証券会社勤務の後、上場企業広報部長、CFOを経て独立。